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High-Frequency Reciprocity-Based Circuit
Model for the Incidence of Electromagnetic
Waves on General Waveguide Structures
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Abstract—In the present contribution we construct a high-
frequency circuit model for the excitation of eigenmodes in
general waveguides due to externally impinging electromagnetic
waves. The circuit model, consisting of distributed sources in
a transmission line model, is based on Lorentz’s reciprocity
theorem. The classical quasi-TEM solution of this problem is
found as a special case from the full-wave model. The theory is
illustrated with numerical examples of electric dipoles radiating
above thick coupled lossy microstrip lines.

I. INTRODUCTION

N IMPORTANT EMC-problem is the excitation of eigen-

modes in waveguide structures due to externally im-
pinging electromagnetic waves. This problem has been stud-
ied extensively in the past for thin wires above conducting
grounds, i.e., for power distribution lines. As an entrance to
literature we refer to [1]. In modern printed circuit boards
and MMIC’s the integration density and frequency or bitrate
increase continuously. One of the resulting effects is the im-
pingement of disturbing electromagnetic waves, due to nearby
components, on interconnection lines. These interconnections,
which are open waveguide structures, mostly take the form
of multiconductor transmission lines (MTL’s), however, the
analysis presented below also includes dielectric waveguide
structures.

In a previous publication [2] we put forward a general, new,
and consistent circuit model for general waveguide structures
and in particular MTL’s valid in the full-wave regime. The
purpose of the present paper is to show how an incident field
impinging on these structures can be translated into source
terms for this circuit model. In general, these sources will be
expressed as per unit length distributed sources. If the incident
field is spatially restricied to a particular longitudinal section
of the structure (or to be more precise, if the incident field
becomes negligibly small outside the considered section), we
will introduce a lumped source typically located in the middle
of the considered section.

The transmission line model developed in [2] describes the
propagation of the discrete modes in the waveguide. Hence,
the circuit model with sources will also only incorporate the
effects of the excitation of the discrete modes. This means that
surface waves or substrate waves and space waves which can
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be excited by the impinging waves are not incorporated in the
model [1], [3]. In other words, we assume that the excitation
of these surface and space waves is local and that these
waves, the amplitude of which decreases with the distance
from the source, are negligible at the generator and load of
the waveguide. Taking into account these surface waves and
space waves requires a study of the detailed interaction of
these waves with the load and generator.

In the past transmission line circuit models with sources
have been constructed in the quasi-TEM limit [4]-[6]. In [7]
the Lorentz reciprocity theorem is used to derive a circuit
model for the incidence of a plane wave on a two-wire finite
length transmission line in the quasi-TEM limit. The wires
are placed in free space and the thin wire assumption is used.
It is important to remark that [7] includes the effect of the
terminations. Our approach is a full-wave one and comprises
the well-documented quasi-TEM or low frequency approach
as a special case. Our model incorporates general excitations
and general geometries and is not restricted to plane wave
excitations nor thin wires or perfect conductors as is often the
case in literature.

The new model in [2] was based on the orthogonality of
the eigenmodes and not on power assumptions. This makes
the new model consistent even for lossy waveguides. Power
related circuit models contain inconsistencies for lossy struc-
tures as has been shown in [2] and [8]. In the present
paper we exploit the Lorentz reciprocity theorem to construct
expressions for the sources in the circuit model. These sources
are expressed as line integrals of the modal field distributions
and the impinging fields. We remark that the determination of
the sources does not require the full electromagnetic solution
of the scattering of the impinging waves on the waveguide
structure. For a MTL structure for example, first the eigen-
modes of the MTL have to be determined followed by the
scattering of the incident wave on the layered structure without
the conductors.

We start with an introduction of the notations and a descrip-
tion of the geometry. Then we give a very short overview of
the circuit model, developed in [2], needed for the further
development of the theory. In the main body of the paper the
integral expressions for the distributed sources are constructed.
The final part of the theory consist of the derivation of the
quasi-TEM limit from our full-wave model. This will yield
the restrictions under which the quasi-TEM model is valid.
The theory is illustrated with a distributed circuit model for
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electrical dipoles radiating above two coupled lossy microstrip
lines.

II. GEOMETRY

We focus our attention to general MTL’s with constant
cross section consisting of an arbitrary number of N con-
ductors embedded in a planar stratified medium. However,
the developed theory is valid for general open waveguides
such as dielectric waveguides and is not restricted to planar
stratified media (see also [2]). A typical cross section is
shown in Fig. 1 together with the coordinate system. The
stratified medium rests on top of a perfectly conducting ground
plane or terminates in a half-space. Each layer ¢ (i =
1,2,---, L) is homogeneous and isotropic with parameters
g; and p; which can be complex to include losses or even
gain. Each of the IV conductors is either perfectly conducting,
exhibits a finite conductivity or could even be a pure dielectric
waveguide. In this last case the notion “conductor” must be
understood in a generalized sense. We restrict our analysis to
the frequency domain. The common time dependence e?*? is
suppressed throughout the paper. An arbitrary incident wave
[e¢(x, y, z), hi"(z, y, z)] impinges on the MTL from the
upper half-space (typically free space).

ITII. TRANSMISSION LINE MODEL FOR A GENERAL WAVEGUIDE

We now focus our attention to a longitudinal section of the
MTL located between the planes z = 27 and z = 29 (see
Fig. 1). As a starting point of our calculations we represent
the fields along that section in terms of a finite number C' of
discrete eigenmodes. We assume that higher order modes are
less important because they are strongly damped due to losses
or because they are in cut-off. The number C' depends on the
frequency but for a typical MTL application the fundamental
eigenmodes will often suffice, although our theory is valid for
the other modes too (see also [2]). There are N fundamental
modes in the presence of a ground plane (C' = N) or N—1
if no ground plane is present (C = N—)1. Hence an arbitrary
(e, h) field propagating along the MTL can be represented by

C
e(@,y, z) =y Kje I’ (Ey,; + E, ju.)
F=1

C
+ Z K;eﬂﬁfZ(EtT,f - E; fu.)

f=1
c
hiz, y, z) = Z K}"e_fﬂfz(Htr,f +H. ru;)
f=r
C
= K;etPrr(Hy - Hoopu). (D)
f=1

Eyr, p(x, y), Hir, 5 (2, y), Bz, §(2, y), and H, y(z, y) are the
transversal and longitudinal eigenmode patterns obtained from
an eigenmode analysis (see e.g., [9], [10]). They only depend
upon the transversal coordinates z and y. K;[ and K are
the excitation coefficients of waves travelling in the positive
and negative z-direction respectively, 3 is the eigenvalue or
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Fig. 1. A typical multiconductor transmission line between the planes
z = z1 and z = z9.

propagation factor of mode f. One can prove the eigenmodes
to be orthogonal [2]. We select them to be orthonormal such
that

%//(Etr,f X Htr’g) Uy dS = 6fg

Sc
fvg:]-127"'70 (2)

where 65, = 1 for f = g, where 6;, = 0 for f # g and
where S, is the total cross section of the MTL. The values of
the coefficients K;r and K are determined by the sources
and loads at the beginning and the end of the MTL. In [2]
it is shown that the following circuit model is a suitable
representation of the wave phenomena (1)

V(z) =2(I0) te KT 4 2(18) e K
I(2) =L,e K" — I K" 3)

V and I are column vectors the C elements of which are
the voltages and currents of the circuit model. K+ and K~
are column vectors with elements K J'f and K, respectively
and (3 is a diagonal matrix with the ;-values on its diagonal
(f = 1,2,---, C). I, is a C x C matrix the columns
of which are the current eigenvectors of the circuit model.
The transmission line model (3) can also be described by the
following set of Telegrapher’s equations

P z1=0

dz

A yy-o @
dz

with
Z = jwL+R=2(L)"" B(L,)""
Y =juC+G =3 L,pL 5)

L, R, C, and G are the (frequency dependent) inductance,
resistance, capacitance and conductance C' x C' matrices. The
C' x C characteristic impedance matrix of the transmission line
model is given by Z ., = 2(I%)"'(L,,)"". The mapping
of the wave phenomena (1) onto the circuit model (3)-(5)
depends on the choice of I,,. We refer the reader to the
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detailed discussions in [2] and [4]. For MTL’s the most
adopted definition for the elements of I, is [11]

Im,]f:% Ht"”,f'dl jv.f:1127"'70 (6)

where ¢, is the circumference of conductor j. This means
that I, ,¢ is the total current through conductor j due to
eigenmode f. This definition is used in the power-current
impedance definition for microstrip and stripline problems
[11]. At low frequencies, i.e., in the quasi-TEM limit and in
the absence of losses, R and G are zero and L and C become
frequency independent and take their classical meaning ([12],

[13D.

IV. INTRODUCTION OF SOURCE TERMS
STARTING FROM A RECIPROCITY THEOREM

We now want to introduce the effect of the incident wave
(e, h™) into the circuit model. This will amount to
determining the values of the voltage and current sources that
must be introduced at the right-hand side of (4) in order to
account for the influence of the incident wave.

As a first step, we remove the conductors from the problem.
We then calculate the diffracted field (e?, h?) due to the
presence of the planar stratified medium. In the sequel only
the (e = e + e, h* = h"* + h?) fields will be of
importance. If we now again introduce the conductors a
scattered field (e, h*°) is generated outside the conductors.
Hence, the total field outside the conductors is given by
(e 4 e + e, h**¢ + h? + h*°). The total field inside
the conductors is denoted by (e®°™¢, heond),

To explain the approach that will be adopted, consider the
example of two coupled microstrip lines with rectangular cross
section located between z = z; and z = 25 as shown on
Fig. 1. Note that we explicitly consider penetrable conductors
with arbitrary complex material parameters £, and f., which
can also be different for each conductor. The conductivity
of the conductors or the imaginary part of ¢, can vary from
zero (dielectric waveguide) to infinity (perfect conductor). In
the sequel we will apply the following reciprocity theorem
[14]. If two sets of fields (e, h,), and (ep. hy) satisty
Maxwell’s equations in the same sourceless volume, the
following relationship holds on the boundary surface S of that
volume

/f(eaxhb—ebxha)~undS:0. (7)
S

In (7) u, is the unit normal vector to S. We consider two
volumes (see Fig. 1). The “outside” volume R, is the volume
bounded by the surface S; which corresponds to the plane
z1 except for the S| surface of the microstrip cross
section, the surface Sy (the 2z = 2z plane minus S%), the
ground plane, a surface part located at infinity S., and the
surface S3, consisting of four parts on each microstrip (the
bottom, top, and side surfaces of the strips). The “inside”
volume R,, corresponds to the inside of the microstrips with
surfaces S3, S1,” and S}. We now apply (7) to R,.: where the
a-field is the scattered field (e’?, h*¢) and the b-field is the

z =
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field of one particular mode [normalized with (2)] propagating
in the positive z-direction. Note that the subscript f in (1) can
take the values 1 and 2 in the considered two strip example.
From (1) and (2) such a modal field is seen to be

e = 6_JBkZ(Etr, Lt E: kuz)
hy, =e 7P (Hy, g + H. pus) (8)

where k can be either 1 or 2 in our example. We also apply
(7) to R,,. The b-field remains the same as for R, but the
a-field is now replaced by (e®™? heond). (7) then leads to
the following results for R,,: and R,,, respectively

(e*“ x hy —er x h*)-1u,dS =0

S1+82+83

(€™ x hy — e x ") ., dS =0. (9)

51455+53

Note that in (9) we already left out the contributions coming
from the ground plane and the contributions coming from Se.
The former ones are zero because (u,, x €%¢) and (u, x eg)
are zero on a perfect conductor. The latter ones drop out
as a consequence of the radiation conditions satisfied by the
propagating mode field and by the scattered field. We can
think of both the scattered field and the modal field as being
generated by equivalent electric and magnetic sources on the
conductor surfaces. As these sources have a limited extent,
the scattered field will automatically satisfy the radiation
conditions. We now invoke the following boundary conditions
valid on S3

cond

u, X e =u, X e*“+u, x e

wmne d

=u, xe*“+u, xe
u, X h®" =u,, x h** +u, x h*
=u, x h* +u, x ™" +u, x h?. (10)

+u, Xe

Subtraction of the two equations in (9), combined with (10)
finally leads to

—// (eq x hy —ep X hy)-u, dS

=21

+// (eaxhk—ekxha)‘uzdS

w==2g

:—//(e’xhk—ekxhl)‘undb’.
S3

In (11), the integrals on the left hand side extend over the
total cross section of the structure at z = 2z; and z = zs,
respectively, while the integral in the right-hand side extends
over the outer surface of the microstrips for z; < z < za.
u, is pointing outward the conductors (see Fig. 1). The
field (e,, hy) is (e*°. h*¢) on S; and Ss, ie., outside the
conductors, and (e°°™¢, he>"?) on S{ and S}, i.e., inside the
conductors.

(1)
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The (e4, h,) field is entirely due to the presence of the con-
ductors. This field will excite modal fields on the conductor,
propagating modes as well as nonpropagating ones.

Until now no assumptions were made to obtain (11). If we
now suppose that the (e, h*) field is negligible for z > 2o
and for z < z; and that at z = z; and z = 2z, the effect of
the nonpropagating modes has already died out, the transversal
part of the (e,, h,) field can be written as [see (1)]

c
€q, tr = Z Pre PRy, ¢

f=1
C

byt =Y Ppe /%7 Hy 4 (12)
=1

for z > z5 and

C

€y, tr = Z +]ﬂf~Et  f
f=1
C

ha, i = Z QretPr7Hy, 4 (13)

for 2 < z; and with f = 1, 2 (i.e., C = 2) in our particular
example. As a final step we insert (12) and (13) into (11) and
using the orthogonality relationships (2) we arrive at

=3 //[(un x e') - (Hep x + H;, 1)
S3
+ (up X 0") - (Bp, & + Bz pu.)le %7 dS (14)

with k = 1, 2, ---, C. If we now replace the (e;, hy) field
used in the above reasoning [i.e., the modal field (8)] by the
normalized modal field propagating in the negative z-direction
[obtained by replacing 8k by — Gk, Hir x by —Hyr 1, and E, 1,
by —F, . in (8)] we can conclude that

Pr=3 //[(un x e') (=Hy r + H: ru.)
S

+ (up X hY) - (Eyp g — E, gu,)]et?Pe2 48, (15)
Equations (12)—(15) show how the field (e*, h*), which is it-
self the combined effect of the incident field and the diffraction
by the planar stratified medium, excites propagating modes to
the right and to the left of this part of the MTL along which the
(e?, h*) field exists. Only those field components of (e*, h?)
tangential to the conductor surfaces come into play, projected
on particular tangential components of the modal patterns. The
integration in (14) and (15) falls into two parts: one integration
is a simple integration over the circumferences of the cross
sections of each conductor, the other integration amounts to a
spatial Fourier transformation along the z-axis for the Fourier
variables — (3 and (3, respectively. As the modal patterns are
z-independent, only the (e’, hi) field is Fourier transformed.

Before we turn to the circuit model, we look at the important
special case of perfect conductors (o, = 0o or £, = ~j00). In

1829

that case u,, X (B4 1 —F, ru.) in (14) and (15) is zero. Hence

-1 //ei R
Ss .
P=-1 //ei I, etifezds.
S3

We have introduced the modal surface currents J, and
J, , of mode %k for propagation in the positive (superscript
+)’ respectively negative (superscript —) z-direction. Their z-
components are identical, their transversal components differ
in sign.

We draw the attention of the reader to the fact that we have
explicitly assumed that the incident field is negligible outside
z1 < z < z9 and that if this is not the case, care should
be taken to include the interaction with terminations outside
71 < 2z < 29 (i.e., the load and generator). We refer to [7] for
a way in which this can be done based on Lorentz reciprocity
for the situation of a rectangular thin wire loop in free space.

(16)

V. CIRCUIT MODEL FOR THE MULTICONDUCTOR
TRANSMISSION LINE IN AN INCIDENT FIELD

In this section we will show that the field calculation results
(14) and (15) can be expressed in circuit terms by introducing
source terms at the right-hand side of (4). The simplest way
to prove this is to first introduce source terms v,6(z — 2’)
and i,6(2 — ') at the right-hand side of the first and second
equation in (4) respectively, where v, and ¢ g are C x 1 column
vectors and to calculate the corresponding solution of the
resulting differential equations. This solution turns out to be

V() :—%(IT)_l +]ﬂ(;‘z’)(IT,l) _ 21_119)

I(z) = 1(1,)e 2= (1T, — 21714, (17)
for z < 2’ and

V(z) = 2(D)1e 8= ([T y + 2071 )
I(2) = +(Ly)e 2= (I, +2050,)  U8)

for z > 2/, as can be readily checked. Comparing (17) and
(18) to (3), we see that (17) and (18) are of the form (3) with

Kt = 3e P8 (L, + 20,0,
and
K™ =0 (19)
for z > 2’ and with
K~ =—1e (100, —21.),)
and
Kt =0 (20)

for z < 2'. In Section III we explained how the field
representations (1) are translated into the circuit representation
(3), where the coefficients K and K~ are identical in both (1)
and (3). Starting from this observation and from (19) and (20),
we can conclude that the sources v,6(z — 2') and i,6(z — 2')
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will be the circuit representation of field sources giving rise
to the following transversal electric fields

c
= Z K;'e"]ﬁszmf forz > 2’
F=t

@1

TeTIPi?E,, ¢ forz < 2

IIMQ

with K J}L the elements of the column vector KT in the first
equation of (19) and with Kf_ the elements of the column
vector X~ in the second equation of (19). Similar equations
can of course be written down for the magnetic field.

If we now consider the following circuit equations:

(flz-{—ZI V,(2)

dl

YV =1 22)

where V. (2) and I,(2) only differ from zero between z; and
23, it follows from (20) that V. (z) and 1, (z) will be the circuit
representation of field sources giving rise to the following
transversal electric field:

C
ey = Z Afe_]ﬂsztr,f forz > 29

f=1
i . (23)
ey = Z Bfeﬂﬂszt,,’f forz < =1
F=1
with
Z2
4= / LM 1LV () + 2(L,) ML ()]
/ 1e7? H1E8% o2 = 2(L,) L, (2)]d2. (24

A and B are again column vectors with A¢ and By as
elements. It now suffices to compare (23) to (12) and (13),
to see that to account for the incident fields studied in the
previous section, Ay must be identified with Py and By with
(. With (14) and (15) this leads to the final values of Kg(z)
and I (z)

V() =—(I})"p(z)
p(z) = ]€ [(u, x ') -H,, + (u, xh*) - E, u,]dc
1,(2) = }Lg(2)
g(z) = j{[unxe ) H.ou, + (un x b') - E,]de. (25)

Note that in (25) only e’ and h® are z-dependent. We have
grouped the transversal and longitudinal eigenmode field com-
ponents into C' x 1 column vectors. E,,, e.g., consists of
elements E,, ((z, y) with f =1, 2, ---, C. The integration
in (25) now only extends over the circumferences c3 of the
cross sections of each conductor. The Fourier transformation
along the z-axis in (14) and (15) will now automatically
emerge from the solution of (22).
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From the reasoning put forward in the previous section and
in particular because only propagating modes are taken into
account, it must be clear to the reader that strictly speaking
the particular solution to (22) only makes sense for z < z;
and for z > z9. To emphasize this fact one could also replace
V,(z) and I (z) by two lumped sources V., and I, e.g.,
located at zo(z1 < 20 < 22)

V() =80~ ) (L8) [ feos B = 20t
+j sin [8(2" — 20)]g(#)} d?’
L,(2) =56(2 — 20) L, f {cos[B(2" — 20)]g(2")

— g sin[B(2" — z0)lp(z")} d2'.

Both (25) and (26) show that, generally speaking, even for
perfect conductors both a voltage and a current source have
to be introduced.

A last point we want to deal with in this section is the
special case of an incident plane wave. Typical calculations
[4]-[6] start from the assumption that the plane wave is present
from z = —oo to z = +oc. From this a distributed source
representation is derived and in the circuit calculations these
distributed sources are then restricted to a finite length of
coupled fransmission lines. In our approach of the problem
this amounts to inserting that plane wave into p(z) and g(z)
and disregarding the requirement that (e*, h') should vanish
outside the (z1, z2) interval and thus neglecting the end effects
occurring in the neighborhood of z = 2; and z = 23 and
neglecting the effect of that plane wave on the terminals.
If (e, hi"°) is a plane wave, that wave will have a z-
dependence of the form e/®=*. This will automatically also
be the case for (e?, h?) and (e, h'). This in turn implies that
p(z) and g(z) can be rewritten as e’*:* A and e’*<* B where A
and B are now constant, i.e., z-independent vectors and that
the e/*:7-dependence also shows up in V, and I,. Looking at
(26) it is clear that V ; and I ; can also be expressed in terms
of A and B and that the integration with respect to z can be
done analytically. We leave this to the reader.

(26)

V1. APPLICATION TO THE QUASI-TEM CASE

In this section, we will restrict ourselves to the case of
perfect conductors, to lossless dielectrics and to the low-
frequency region in which the fundamental modes used in
(1) are quasi-TEM modes. It is our purpose to show that
the general result (25) reduces to published results for the
quasi-TEM limit.

In the quasi-TEM limit the longitudinal eigenmode fields
E, t(z,y) and H, ;(z, y) are negligible with respect to the
transversal ones which can be derived from suitable scalar
functions [13]

Et"‘: f= _vtr¢f ($, y)

1
Htr,f = _; u, X Vt,nL/)f(ZIJ, y) (27)
¢ has the meaning of a potential, ¢y on the other hand
has the meaning of a magnetic flux [13]. They are both
zero on the reference conductor and take a constant value
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on the other conductors. The gradient operator V.. only
operates on the transversal coordinates x and y and p takes
a different value p = p; in each layer of the stratified
medium. If we now consider two modes f and g with
corresponding functions ¢y, 1y and ¢4, 1, we first impose
the orthonormality condition (2)

1 1
3 |5 Vebr Vutgds =6, f9=1,2,C. @8
Sc
Using a Green’s theorerh, (28) can be rewritten as
¢f 31/}_,, _
2] W o de=6 29

where we used the fact that ¢, satisfies Laplace’s equation.
The integration extends over the circumferences of the cross
sections of all conductors and 0/8n is taken with respect to
the outward pointing normal u,.. As ¢; and (1/p)(9t,/0n)
are continuous throughout the cross-section (the first quan-
tity being a potential, the second one a tangential magnetic
field component), (29) does not contain contributions from
layer interfaces. Replacing ¢; by its constant value Vi
on each conductor i (¢ = 1,2,--., C) and noting that
(1/1)(Otpg/On) = —H,, where H. is the tangential com-
ponent of the magnetic field at each conductor (with u, =
—u, X U;), (29) reduces to

32 Viilyi = §V]1, = by, (30)
The summation extends over all conductors and [ gi is the total
current flowing through conductor ¢ for mode g. For further
use below we have grouped voltages and currents into two
C' x 1 column vectors. A simple choice to satisfy (30) would,
e.g., be Vy, = by; and I, = 26,;. This implies that mode f
would correspond with zero potential on each conductor except
for conductor f where the potential is 1 volt. Mode g then
corresponds with zero current flowing through each conductor
except for conductor g which supports a current of 2 ampere.
This choice would be possible in the pure static case (w = 0)
where the electric and magnetic field problem are completely
decoupled. However, in the quasi-static case both problems
are coupled and conductor voltages and currents are found
to be related. In [13] it is shown that the eigenvoltages and
eigencurrents of the quasi-TEM problem satisfy the following
equations:

twli
1=2wCy

B

|

€1y

with the plus (minus) sign for propagation in the positive
(negative) z-direction and hence

w?(LC)u = v

wo(C LYi =B (32)

where v and 2 are a set of corresponding eigenvoltages and
eigencurrents, and where 3 is the corresponding eigenvalue.
If we now choose V ; to be equal to one of the C' solutions
of the first equation in (32) and I g to be equal to one of the
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y
J, = Juy 8(x) 8(y-2mm) &(z)

1 mm 05 mm
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=98 tg8=0005 0.635mm x
L d
~ Z

Fig. 2. Geometry of two coupled asymmetric thick microstrip lines on a
lossy substrate excited by a vertical dipole J, = Ju, é(z) 6(z) 6(y —2 mm).

C solutions of the second equation in (32), one can easily
prove that V?I I, =0 for f # g and by a suitable selection
of the amplitudes of the eigenvectors it is possible to arrive
at VT Vil; =2 forall f. The C eigenvalues (3 of (32), which
are identical for both equations, of course correspond to the
propagation factors 8¢ used in (1).

We now turn to (25). For perfect conductors the second
term in both p and g is identically zero. The first term in g can
also be neglected as it depends upon a longitudinal eigenmode
field. In the quasi-TEM limit, which is in fact a low-frequency
approximation, e* can approximately regarded to be constant
over the cross section of each conductor. Taking this constant
value outside the integration, it can easily be verified that the
integration reduces to the integration of —(Hy, - u.) over the
circumference of each conductor. In conclusion, it is found that

C\
==Y e ()]

i=1

g5(z) = (33)

where Iy, is the value of the eigencurrent of mode f on
conductor 7, as already defined above and where e}, ,(2) is
the z-component of e* on conductor i. To finally determine
YV, we first turn back to (6). The column index f in I, it
refers to mode f while the row index j refers to the conductor.
This implies that I, ;; = Iy; and that the rows of the
C x C matrix [, are given by (I f)T. From (25) we find
that p(z) = —(Z,,,)" V., or in component form and taking into
account (33)
c

> el ()

=1

C

==Y Vou(2)Iys

=1

ps(z) =—

(34)

leading to the conclusion that element f of the column vector
V., is given by € ;(z) and that the column vector I , = 0. With
these values for V / and I, we arrive at a circuit representation
which is precisely the one given in the equations 2.20 and 2.21
in [5] for a description in terms of a scattered voltage which

corresponds precisely to what we are doing here.

VII. NUMERICAL EXAMPLE

Consider the coupled microstrip lines on a lossy substrate
of Fig. 2. In [2] the transmission line parameters C, L, R, and
G in (5) for this structure were calculated up to 100 GHz. In
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Fig. 3. (a) Amplitude and (b) phase of the distributed voltage sources V1
and Vg, 2 due to a vertical dipole J, = Juy 6(x)8(2) 6(y — 2mm) and a
horizontal dipole J;, = Ju, é(x)8(2) 8(y — 2mm) above the structure of
Fig. 2.

this example we will work at a frequency of 10 GHz. The
transmission line parameters at 10 GHz are given by

242.7  —9.978

C= (—9.978 167.8 > pF/m
3024 68.82

L= (68.82 386.6) nH/m

445 2.95
E= (2.95 4.56) ©2/m

G- (71.80 —2.7 (35)

—2.7 48.—12) mS/m.

We will excite the structure by a vertical electrical dipole
J, = Juy 6(z)6(z) 6(y — 2mm) (as shown on Fig. 2) and
a horizontal electrical dipole J;, = Ju, §(z) 6(2) 6(y — 2 mm)
above the structure. The amplitude J of both dipoles is 1 mA
mm. In order to calculate the z-dependent, distributed sources
V,(2) and I ,(z) with (25) we first need the modal tangential
magnetic field components at the surfaces of the strips or in
other words we need the modal surface current distributions
[cf. (16)] on the strips. These modal surface current densities
were found with the technique described in [9]. In (25) on
the other hand, we need the electric field e’ generated by
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Fig. 4. (a) Amplitude and (b) phase of the distributed current sources Iy 1
and I o due to a vertical dipole J. = Juy 6(x)8(z) 6(y — 2mm) and a
horizontal dipole J;, = Ju, é(xr)6(z) 6(y — 2mm) above the structure of
Fig. 2.

the dipoles above the structure of Fig. 2 without the strips.
This field is calculated easily with a classical spectral domain
technique to incorporate the layered medium (see for example
Chapter 6 in [4]). Figs. 3 and 4, respectively, show the
complex voltage sources V; 1(z) (full lines), V;, 2(z) (dashed
lines) and complex current sources I 1(z) (full lines), I, 2(%)
(dashed lines) for the vertical dipole J, and the horizontal
dipole Jj.

The results for the current sources are the easiest ones to
interpret. From Fig. 4(a) it is clear that I; 1 (z) and I, 5(z) are
symmetric but with an about two times larger amplitude for
the horizontal dipole. Looking at Fig. 4(b) shows that for the
horizontal dipole the sign of I 1(z) and I, »(z) is different
as the respective phases are close to 0 and . For the vertical
dipole the phase of I 1(z) and I, o(z) almost coincides but
shows a rapid variation between z = —3 mm and z = 3 mm.

The voltage source results have an asymmetric nature with
respect to the y-axis with again a larger amplitude for the
horizontal dipole case but only by a factor of 1.1. Here again,
the phase results for the vertical dipole vary rather quickly for
—3mm < z < 3 mm while for the horizontal dipole there
is again a difference of about 7 in the phase results for both
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conductors. Remark that in all cases, due to the asymmetry,
the phase suffers a jump discontinuity by an amount of 7 at
z = 0 mm, i.e., at the place where the amplitude becomes zero.

VIII. CONCLUSION

We have constructed a rigorous high-frequency circuit
model for the impinging of external electromagnetic waves
on waveguide structures and in particular on multiconductor
transmission lines. The model consists of distributed current
and voltage sources which are expressed as line integrals
around the conductors of the modal field distributions and
the impinging fields. Finally, to illustrate our approach, a
numerical circuit model was constructed for electric dipoles
above two coupled thick lossy microstrip lines.
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